ISSN 2518-170X (Online) ISSN 2224-5278 (Print)

OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, SERIES OF GEOLOGY AND TECHNICAL SCIENCES

Nº5 2025

NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, SERIES OF GEOLOGY AND TECHNICAL SCIENCES

5 (473)SEPTEMBER – OCTOBER 2025

THE JOURNAL WAS FOUNDED IN 1940

PUBLISHED 6 TIMES A YEAR

«Central Asian Academic Research Center» LLP is pleased to announce that "News of NAS RK. Series of Geology and Technical sciences" scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of Geology and Technical Sciences in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of geology and engineering sciences to our community.

«Орталық Азия академиялық ғылыми орталығы» ЖШС «ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Web of Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды білдіреді.

ТОО «Центрально-азиатский академический научный центр» сообщает, что научный журнал "Известия НАН РК. Серия геологии и технических наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по геологии и техническим наукам для нашего сообщества.

EDITOR-IN-CHIEF

ZHURINOV Murat Zhurinovich, Doctor of Chemical Sciences, Professor, Academician of NAS RK, President of National Academy of Sciences of the Republic of Kazakhstan, RPA, General Director of JSC "D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry" (Almaty, Kazakhstan), https://www.scopus.com/authid/detail.uri?authorId=6602177960, https://www.webofscience.com/wos/author/record/2017489

DEPUTY EDITOR-IN-CHIEF

ABSADYKOV Bakhyt Narikbayevich, Doctor of Technical Sciences, Professor, Academician of NAS RK, Satbayev University (Almaty, Kazakhstan), https://www.scopus.com/authid/detail.uri?authorId=6504694468, https://www.webofscience.com/wos/author/record/2411827

EDITORIAL BOARD:

ABSAMETOV Malis Kudysovich, (Deputy Editor-in-Chief), Doctor of Geological and Mineralogical Sciences, Professor, Academician of NAS RK, Director of the Akhmedsafin Institute of Hydrogeology and Geoecology (Almaty, Kazakhstan), https://www.scopus.com/authid/detail.uri?authorId=56955769200, https://www.webofscience.com/wos/author/record/1937883

ZHOLTAEV Geroy Zholtaevich, Doctor of Geological and Mineralogical Sciences, Professor, Honorary Academician of NASRK (Almaty, Kazakhstan), https://www.scopus.com/authid/detail.uri?authorId=57112610200, https://www.webofscience.com/wos/author/record/1939201

SNOW Daniel, PhD, Associate Professor, Director, Aquatic Sciences Laboratory, University of Nebraska (Nebraska, USA), https://www.scopus.com/authid/detail.uri?authorId=7103259215, https://www.webofscience.com/wos/author/record/1429613

SELTMANN Reimar, PhD, Head of Petrology and Mineral Deposits Research in the Earth Sciences Department, Natural History Museum (London, England), https://www.scopus.com/authid/detail.uri?authorId=55883084800, https://www.webofscience.com/wos/author/record/1048681

PANFILOV Mikhail Borisovich, Doctor of Technical Sciences, Professor at the University of Nancy (Nancy, France), https://www.scopus.com/authid/detail.uri?authorId=7003436752, https://www.webofscience.com/wos/author/record/1230499

SHEN Ping, PhD, Deputy Director of the Mining Geology Committee of the Chinese Geological Society, Member of the American Association of Economic Geologists (Beijing, China), https://www.scopus.com/authid/detail.uri?authorId=57202873965, https://www.webofscience.com/wos/author/record/1753209

detail.uri?authorId=57202873965, https://www.webofscience.com/wos/author/record/1753209

FISCHER Axel, PhD, Associate Professor, Technical University of Dresden (Dresden, Berlin), https://www.scopus.com/authid/detail.uri?authorId=35738572100,https://www.webofscience.com/wos/author/record/2085986

AGABEKOV Vladimir Enokovich, Doctor of Chemical Sciences, Academician of NAS of Belarus, Honorary Director of the Institute of Chemistry of New Materials (Minsk, Belarus), https://www.scopus.com/authid/detail.uri?authorId=7004624845

CATALIN Stefan, PhD, Associate Professor, Technical University of Dresden, Germany, https://www.scopus.com/authid/detail.uri?authorId=35203904500, https://www.webofscience.com/wos/author/record/1309251

Jay Sagin, PhD, Associate Professor, Nazarbayev University (Astana, Kazakhstan), https://www.scopus.com/authid/detail.uri?authorId=57204467637, https://www.webofscience.com/wos/author/record/907886

FRATTINI Paolo, PhD, Associate Professor, University of Milano - Bicocca (Milan, Italy), https://www.scopus.com/authid/detail.uri?authorId=56538922400

NURPEISOVA Marzhan Baysanovna – Doctor of Technical Sciences, Professor of Satbayev University, (Almaty, Kazakhstan), https://www.scopus.com/authid/detail.uri?authorId=57202218883, https://www.webofscience.com/wos/author/record/AAD-1173-2019

RATOV Boranbay Tovbasarovich, Doctor of Technical Sciences, Professor, Head of the Department of Geophysics and Seismology, Satbayev University (Almaty, Kazakhstan), https://www.scopus.com/authid/detail.uri?authorId=55927684100, https://www.webofscience.com/wos/author/record/1993614

RONNY Berndtsson, Professor at the Center of Promising Middle Eastern Research, Lund University (Sweden), https://www.scopus.com/authid/detail.uri?authorId=7005388716, https://www.webofscience.com/wos/author/record/1324908

MIRLAS Vladimir, Faculty chemical engineering and Oriental research center, Ariel University, (Israel), https://www.scopus.com/authid/detail.uri?authorId=8610969300, https://www.webofscience.com/wos/author/record/53680261

News of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technology sciences.

ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Owner: «Central Asian Academic Research Center» LLP (Almaty).

The certificate of registration of a periodical printed publication in the Committee of information of the Ministry of Information and Social Development of the Republic of Kazakhstan **No. KZ39VPY00025420**, issued 29.07.2020. Thematic scope: *geology, hydrogeology, geography, mining and chemical technologies of oil, gas and metals* Periodicity: 6 times a year.

http://www.geolog-technical.kz/index.php/en/

БАС РЕЛАКТОР

ЖҰРЫНОВ Мұрат Жұрынұлы, химия ғылымдарының докторы, профессор, ҚР ҰҒА академигі, РҚБ «Қазақстан Республикасы Ұлттық Ғылым академиясының» президенті, АҚ «Д.В. Сокольский атындағы отын, катализ және электрохимия институтының» бас директоры (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=6602177960, https://www.webofscience.com/wos/author/record/2017489

БАС РЕЛАКТОРЛЫН ОРЫНБАСАРЫ:

АБСАДЫҚОВ Бақыт Нәрікбайұлы, техника ғылымдарының докторы, профессор, ҚР ҰҒА академигі, Қ.И. Сәтбаев атындағы Қазақ ұлттық техникалық зерттеу университеті (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=6504694468, https://www.webofscience.com/wos/author/record/2411827

РЕЛАКЦИЯ АЛКАСЫ:

ӘБСӘМЕТОВ Мәліс Құдысұлы (бас редактордың орынбасары), геология-минералогия ғылымдарының докторы, профессор, ҚР ҰҒА академигі, У.М. Ахмедсафин атындағы Гидрогеология және геоэкология институтының директоры, (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=56955769200, https://www.webofscience.com/wos/author/record/1937883

ЖОЛТАЕВ Герой Жолтайұлы, геология-минералогия ғылымдарының докторы, профессор, ҚР ҰҒА құрметті академигі, (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=57112610200,

https://www.webofscience.com/wos/author/record/1939201

СНОУ Дэниел, PhD, қауымдастырылған профессор, Небраска университетінің Су ғылымдары зертханасының директоры, (Небраска штаты, АҚШ), https://www.scopus.com/authid/detail.uri?authorId=7103259215, https://www.webofscience.com/wos/author/record/1429613

ЗЕЛЬТМАНН Раймар, PhD, Жер туралы ғылымдар бөлімінің петрология және пайдалы қазбалар кен орындары саласындағы зерттеулерінің жетекшісі, Табиғи тарих мұражайы, (Лондон, Ұлыбритания), https://www.scopus.com/authid/detail.uri?authorId=55883084800, https://www.webofscience.com/wos/author/record/1048681

ПАНФИЛОВ Михаил Борисович, техника ғылымдарының докторы, Нанси университетінің профессоры, (Нанси, Франция), https://www.scopus.com/authid/detail.uri?authorId=7003436752, https://www.webofscience.com/wos/author/record/1230499

ШЕН Пин, PhD, Қытай геологиялық қоғамының Тау-кен геологиясы комитеті директорының орынбасары, Американдық экономикалық геологтар қауымдастығының мүшесі, (Бейжің, Қытай), https://www.scopus.com/authid/detail.uri?authorId=57202873965, https://www.webofscience.com/wos/author/record/1753209

ФИШЕР Аксель, қауымдастырылған профессор, PhD, Дрезден техникалық университеті, (Дрезден, Берлин), https://www.scopus.com/authid/detail.uri?authorId=35738572100, https://www.webofscience.com/wos/author/record/2085986

АГАБЕКОВ Владимир Енокович, химия ғылымдарының докторы, Беларусь ҰҒА академигі, Жаңа материалдар химиясы институтының құрметті директоры, (Минск, Беларусь), https://www.scopus.com/authid/detail.uri?authorId=7004624845

КАТАЛИН Стефан, PhD, қауымдастырылған профессор, Техникалық университеті (Дрезден, Германия), https://www.scopus.com/authid/detail.uri?authorId=35203904500, https://www.webofscience.com/wos/author/record/1309251

САҒЫНТАЕВ Жанай, PhD, қауымдастырылған профессор, Назарбаев университеті (Астана, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=57204467637, https://www.webofscience.com/wos/author/record/907886

ФРАТТИНИ Паоло, PhD, қауымдастырылған профессор, Бикокк Милан университеті, (Милан, Италия), https://www.scopus.com/authid/detail.uri?authorId=56538922400

НҰРПЕЙІСОВА Маржан Байсанқызы — Техника ғылымдарының докторы, Қ.И. Сәтбаев атындағы Қазақұлттықзерттеутехникалықуниверситетініңпрофессоры, (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?author/de57202218883 https://www.webofscience.com/wos/author/record/AAD-1173-2019

authid/detail.uri?authorId=57202218883, https://www.webofscience.com/wos/author/record/AAD-1173-2019 РАТОВ Боранбай Товбасарович, техника ғылымдарының докторы, профессор, «Геофизика және сейсмология» кафедрасының меңгерушісі, К.И. Сәтбаев атындағы Қазақ ұлттық зерттеу техникалық университеті, (Алматы, Қазақстан), https://www.scopus.com/authid/detail.uri?authorId=55927684100, https://www.webofscience.com/wos/author/record/1993614

РОННИ Берндтссон, Лунд университетінің Таяу Шығысты перспективалы зерттеу орталығының профессоры, Лунд университетінің толық курсты профессоры, (Швеция), https://www.scopus.com/authid/detail.uri?authorId=7005388716, https://www.webofscience.com/wos/author/record/1324908

МИРЛАС Владимир, Ариэль университетінің Химиялық инженерия факультеті және Шығыс ғылымизерттеу орталығы, (Израиль), https://www.scopus.com/authid/detail.uri?authorId=8610969300, https://www.webofscience.com/wos/author/record/53680261

«ҚР ҰҒА» РҚБ Хабарлары. Геология және техникалық ғылымдар сериясы».

ISSN 2518-170X (Online),

ISSN 2224-5278 (Print)

Меншіктеуші: «Орталық Азия академиялық ғылыми орталығы» ЖШС (Алматы қ.).

Қазақстан Республикасының Ақпарат және қоғамдық даму министрлігінің Ақпарат комитетінде 29.07.2020 ж. берілген № KZ39VPY00025420 мерзімдік басылым тіркеуіне қойылу туралы куәлік.

Тақырыптық бағыты: Геология, гидрогеология, география, тау-кен ісі, мұнай, газ және металдардың химиялық технологиялары

Мерзімділігі: жылына 6 рет.

http://www.geolog-technical.kz/index.php/en/

ГЛАВНЫЙ РЕЛАКТОР

ЖУРИНОВ Мурат Журинович, доктор химических наук, профессор, академик НАН РК, президент РОО Национальной академии наук Республики Казахстан, генеральный директор АО «Институт топлива, катализа и электрохимии им. Д.В. Сокольского» (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=6602177960, https://www.webofscience.com/wos/author/record/2017489

ЗАМЕСТИТЕЛЬ ГЛАВНОГО РЕДАКТОРА

АБСАДЫКОВ Бахыт Нарикбаевич, доктор технических наук, профессор, академик НАН РК, Казахский национальный исследовательский технический университет им. К.И. Сатпаева (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=6504694468, https://www.webofscience.com/wos/author/record/2411827

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:

АБСАМЕТОВ Малис Кудысович, (заместитель главного редактора), доктор геологоминералогических наук, профессор, академик НАН РК, директор Института гидрогеологии и геоэкологии им. У.М. Ахмедсафина (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=56955769200, https://www.webofscience.com/wos/author/record/1937883

ЖОЛТАЕВ Герой Жолтаевич, доктор геологоминералогических наук, профессор, почетный академик НАН РК (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=57112610200, https://www.webofscience.com/wos/author/record/1939201

СНОУ Дэниел, PhD, ассоциированный профессор, директор Лаборатории водных наук Университета Небраски (штат Небраска, США), https://www.scopus.com/authid/detail.uri?authorId=7103259215, https://www.webofscience.com/wos/author/record/1429613

ЗЕЛЬТМАНН Раймар, PhD, руководитель исследований в области петрологии и месторождений полезных ископаемых в Отделе наук о Земле Музея естественной истории (Лондон, Англия), https://www.scopus.com/authid/detail.uri?authorId=55883084800,https://www.webofscience.com/wos/author/record/1048681

ПАНФИЛОВ Михаил Борисович, доктор технических наук, профессор Университета Нанси (Нанси, Франция), https://www.scopus.com/authid/detail.uri?authorId=7003436752, https://www.webofscience.com/wos/author/record/1230499

ШЕН Пин, PhD, заместитель директора Комитета по горной геологии Китайского геологического общества, член Американской ассоциации экономических геологов (Пекин, Китай), https://www.scopus.com/authid/detail.uri?authorld=57202873965, https://www.webofscience.com/wos/author/record/1753209

ФИШЕР Аксель, ассоциированный профессор, PhD, технический университет Дрезден (Дрезден, Берлин), https://www.scopus.com/authid/detail.uri?authorId=35738572100, https://www.webofscience.com/wos/author/record/2085986

АГАБЕКОВ Владимир Енокович, доктор химических наук, академик НАН Беларуси, почетный директор Института химии новых материалов (Минск, Беларусь), https://www.scopus.com/authid/detail.uri?authorId=7004624845

КАТАЛИН Стефан, PhD, ассоциированный профессор, Технический университет (Дрезден, Германия), https://www.scopus.com/authid/detail.uri?authorId=35203904500, https://www.webofscience.com/wos/author/record/1309251

САГИНТАЕВ Жанай, PhD, ассоциированный профессор, Hasapбaeв университет (Астана, Kasaxctaн), https://www.scopus.com/authid/detail.uri?authorId=57204467637 , https://www.webofscience.com/wos/author/record/907886

ФРАТТИНИ Паоло, PhD, ассоциированный профессор, Миланский университет Бикокк (Милан, Италия), https://www.scopus.com/authid/detail.uri?authorId=56538922400

НУРПЕ́ИСОВА Маржан Байсановна – доктор технических наук, профессор Казахского Национального исследовательского технического университета им. К.И. Сатпаева, (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=57202218883, https://www.webofscience.com/wos/author/record/AAD-1173-2019

PATOB Боранбай Товбасарович, доктор технических наук, профессор, заведующий кафедрой «Геофизика и сейсмология», Казахский Национальный исследовательский технический университет им. К.И. Сатпаева, (Алматы, Казахстан), https://www.scopus.com/authid/detail.uri?authorId=55927684100, https://www.webofscience.com/wos/author/record/1993614

РОННИ Берндтссон, Профессор Центра перспективных ближневосточных исследований Лундского университета, профессор (полный курс) Лундского университета, (Швеция), https://www.scopus.com/authid/detail.uri?authorId=7005388716, https://www.webofscience.com/wos/author/record/1324908

МИРЛАС Владимир, Факультет химической инженерии и Восточный научно-исследовательский центр, Университет Ариэля, (Израиль), https://www.scopus.com/authid/detail.uri?authorId=8610969300, https://www.webofscience.com/wos/author/record/53680261

«Известия РОО «НАН РК». Серия геологии и технических наук».

ISSN 2518-170X (Online),

ISSN 2224-5278 (Print)

Собственник: TOO «Центрально-азиатский академический научный центр» (г. Алматы).

Свидетельство о постановке на учет периодического печатного издания в Комитете информации

Министерства информации и общественного развития Республики Казахстан № **KZ39**VPY00025420, выданное 29.07.2020 г.

Тематическая направленность: геология, гидрогеология, география, горное дело и химические технологии нефти, газа и металлов

Периодичность: 6 раз в год.

http://www.geolog-technical.kz/index.php/en/

© ТОО «Центрально-азиатский академический научный центр», 2025

CONTENTS

Y.A. Altay, Zh.M. Dosbaev, A.A. Altayeva, P.M. Rakhmetova, D.B. Absadykov Predictive model for assessing diagnostic significant parameters of acoustic emission: machine learning evidence
E.T. Alsheriyev, K.S. Dossaliyev, A.S. Naukenova, B.A. Ismailov Radiation, chemical situations and communal damage caused during possible earthquake in Turkestan region
B.B. Amralinova, K.S. Togizov, A. Nukhuly, N.Zh. Zhumabay, A.Y. Yessengeldina The nature of the Karasor-Lisakov magnetic anomaly and identification of promising areas for magnetite ore deposits in Kazakhstan
B. Assanova, B. Orazbayev, Zh. Moldasheva, Zh. Shangitova Decision making on effective control of rectification process in the main column of delayed coking unit in fuzzy environment
A.O. Zhadi1, A.G. Sherov, L. Makhmudova, L.T. Ismukhanova, E.K. Talipova Climate change impacts on Central Asian high-mountain lakes: the case of Lake Markakol (Kazakhstan)
G.Zh. Zholtayev Geodynamic prerequisites for assessing the hydrocarbon potential of the Balkhash basin
I. Golabtounchi, A. Solgi, M. Pourkermani, M. Zare The investigation of morphotectonical indexes and seismotectonic activity in Bahjatabad dam –Iran
V.A. Ismailov, A.R. Rakhmatov, A.S. Xusomiddinov, E.M. Yadigarov, J.Sh. Bozorov
Assessment of the soil seismic condition through microseismic measurements (in the example of the city of Bukhara)
L.V. Krasovskaya, V.S. Tynchenko, O.A. Antamoshkin, S.V. Pchelintseva, M.S. Nikanorov
Application of machine learning methods as a modern approach to rock analysis
V.V. Kukartsev, A.A. Stupina, E.V. Khudyakova, I.A. Vakhrusheva, K.S. Muzalev
Application of machine learning methods for a comprehensive assessment of the ecological consequences of tectonic activities in the Caspian region

B. Kulumbetov, M. Bakiev, Kh. Khasanov, K. Yakubov, A. Khalimbetov Earthworks for the construction of an irrigation canal embankment using sandy soil
K.A. Kauldashev, M.K. Kembayev, A.V. Gusev Results of integrated geological and geophysical studies in the exploration of the Sokyrkoy gold-copper porphyry deposit (Central Kazakhstan)
A. Mussina, G. Baitasheva, G. Medeuova, M. Kopzhassar, R. Amrousse Modern methods of amalgamation of low solube metals and alloys: contribution to sustainable development and environmental protection (SDG 12)206
V. Mukhametshin, R. Gilyazetdinov, D. Saduakassov, M. Tabylganov, M. Sarbopeyeva Influence of variation coefficient of non-homogeneity on the efficiency of selection of optimal technology of hydrochloric acid treatment
A. Nurmagambetov, A.T. Danabaeva, Z.A. Sailaubayeva, A.M. Katubayeva On the seismicity and seismic potential of the Zhambyl region of Kazakhstan
N.P. Stepanenko, O.K. Kurilova, A.B. Erkinova, T.M. Kaidash Seismotectonic model of Southern Kazakhstan as a basis for seismic hazard assessment
J.B. Toshov, K. Yelemessov, B.J. Baymirzayev, D. Baskanbayeva, U.F. Murodbekov Drainage methods of the pit wall massif for efficient groundwater interception in open-pit mines
A.S. Urazaliyev, D.A. Shoganbekova, M.S. Kozhakhmetov, N.N. Zhaksygul Development of a local quasi-geoid model of Almaty city using the fast collocation method
N.S. Faiz, Sh.K. Shapalov, N.P. Tokenov, K.Zh. Smagulov, B.K. Nauryz Assessment of optimal and effective wind farm implementation sites in the System Advisor Module
V. Yusupov, B. Khaydarov, N. Sattorova, F. Boltayev, E. Khakimov Hydrogeoseismological monitoring of water level and gas changes during earthquakes

NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, SERIES OF GEOLOGY AND TECHNICAL SCIENCES ISSN 2224–5278

Volume 5. Number 473 (2025), 253-266

https://doi.org/10.32014/2025.2518-170X.562

UDC 550.34

© N.P. Stepanenko*, O.K. Kurilova, A.B. Erkinova, T.M. Kaidash, 2025.

National Scientific Center for Seismological Observations LLP and research "Ministry of Emergency Situations of the Republic of Kazakhstan", Almaty, Kazakhstan.

E- mail: nstep56@mail.ru

SEISMOTECTONIC MODEL OF SOUTHERN KAZAKHSTAN AS A BASIS FOR SEISMIC HAZARD ASSESSMENT

N.P. Stepanenko — Candidate of Technical Sciences, head of the Laboratory of Deep structure of the earth's crust, National Scientific Center for Seismological Observations and Research of the Ministry of Emergency Situations of the Republic of Kazakhstan, Almaty, Kazakhstan,

E-mail: nstep56@mail.ru, https:/orcid.org/0000-0003-3532-5481;

O.K. Kurilova — Leading Researcher of the Laboratory of Deep structure of the earth's crust, National Scientific Center for Seismological Observations and Research of the Ministry of Emergency Situations of the Republic of Kazakhstan, Almaty, Kazakhstan,

E-mail: kurilova.o@mail.ru. https://orcid.org/0009-0003-9420-2323;

A.B. Erkinova — Leading Researcher of the Laboratory of Deep structure of the earth's crust, National Scientific Center for Seismological Observations and Research of the Ministry of Emergency Situations of the Republic of Kazakhstan, Almaty, Kazakhstan,

E-mail: akerke erkinova@mail.ru. https://orcid.org/0009-0009-6320-6413;

T.M. Kaidash — Candidate of Geological and Mineralogical Sciences, Leading Researcher of the Laboratory of Deep structure of the earth's crust, National Scientific Center for Seismological Observations and Research of the Ministry of Emergency Situations of the Republic of Kazakhstan, Almaty, Kazakhstan,

E-mail: tankay@yandex.ru. https://orcid.org/0009-0009-7804-9676.

Abstract. In seismological and seismotectonic respects, the Aral-Karatau seismically dangerous region, which includes Southern Kazakhstan, has not been sufficiently studied. However, for this region there are detailed geological and geophysical materials, the capacity of the earth's crust, active mantle, etc. At different times, seismic events with a magnitude of M=2.5-7.5 were recorded on the territory of Southern Kazakhstan, which indicates the presence of potentially dangerous seismogenic zones with the maximum magnitude of expected earthquakes. These zones are sources of powerful dynamic impacts on the geological environment, and through it - on various building structures and the human habitat. According to established concepts, the activity of seismic regions is predetermined by the previous history of their geological development, especially at the last neotectonic stage. A

regional seismotectonic model (Map of seismogenic zones) of real and potential zones of occurrence of earthquake sources in the studied territory has been developed based on a set of geophysical, geological-tectonic and seismological data. The seismotectonic model is the basis for seismic intensity calculations in a probabilistic variant, as well as for forecasting seismic impacts in peak ground accelerations. The map of tectonic faults of Southern Kazakhstan can be used in various seismotectonic and geodynamic constructions, including those of an applied nature for forecasting dangerous natural processes associated with the destruction of the earth's crust. Together with the database, it is a solid foundation for the accumulation of information, its tectonophysical analysis and the development of other cartographic projects, which will allow a deeper understanding of the features of the seismotectonic process of Southern Kazakhstan.

Keywords: rectonic fault, seismotectonic model, seismic potential

The studies funded by Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan under Program No. BR 24992763

© Н.П. Степаненко*, О.К. Курилова, А.Б. Еркинова, Т.М. Кайдаш, 2025.

Сейсмологиялық бақылаулар және зерттеулер ұлттық ғылыми орталығы, Қазақстан Республикасы Төтенше жағдайлар министірлігі,

> Алматы, Қазақстан. E-mail: nstep56@mail.ru

СЕЙСМИКАЛЫҚ ҚАУІПТІ БАҒАЛАУДЫҢ НЕГІЗІ РЕТІНДЕ ОҢТҮСТІК ҚАЗАҚСТАННЫҢ СЕЙСМОТЕКТОНИКАЛЫҚ МОДЕЛІ

Н.П. Степаненко — техника ғылымдарының кандидаты, зертхана меңгерушісі, «Ұлттық сейсмологиялық бақылау және зерттеу ғылыми орталығы» ЖШС, ҚР ТЖМ, Алматы, Қазақстан, E-mail: nstep56@mail.ru. https://orcid.org/0000-0003-3532-5481;

О.К. Курилова — жетекші ғылыми қызметкер, «Ұлттық сейсмологиялық бақылау және зерттеу ғылыми орталығы» ЖШС, ҚР ТЖМ, Алматы, Қазақстан,

E-mail: kurilova.o@mail.ru. https:/orcid.org/0009-0003-9420-2323;

А.Б. Еркинова — аға ғылыми қызметкер, «Ұлттық сейсмологиялық бақылау және зерттеу ғылыми орталығы» ЖШС, ҚР ТЖМ, Алматы, Қазақстан,

E-mail: akerke erkinova@mail.ru. https://orcid.org/0009-0009-6320-6413;

Т.М. Қайдаш — геология-минералогия ғылымдарының кандидаты, жетекші ғылыми қызметкер, «Ұлттық сейсмологиялық бақылау және зерттеу ғылыми орталығы» ЖШС, ҚР ТЖМ, Алматы, Қазақстан,

E-mail: tankay@yandex.ru. https://orcid.org/0009-0009-7804-9676.

Аннотация. Сейсмологиялық және сейсмотектоникалық қатынастарда Оңтүстік Қазақстанға жататын Арал-Қаратау сейсмикалық қауіпті өңірі жеткілікті зерттелмеген. Алайда, бұл аймақ үшін егжей-тегжейлі геологиялық-геофизикалық материалдар, жер қыртысының қуаты, белсенді мантия және т.б. бар. Әр уақытта Оңтүстік Қазақстан аумағында M=2.5-7.5 магнитудасы

бар сейсмикалық оқиғалар тіркелді, бұл күтілетін жер сілкіністерінің ең жоғары магнитудасы бар ықтимал қауіпті сейсмогендік аймақтардың болуын көрсетеді. Бұл аймақтар геологиялық ортаға, ал ол арқылы әртүрлі құрылыс құрылымдарына және адамның қоршаған ортасына күшті динамикалық әсер ету көздері болып табылады. Үстемдік ететін идеяларға сәйкес, сейсмикалық аймақтардың белсенділігі олардың геологиялық дамуының бұрынғы тарихымен, әсіресе соңғы неотектоникалық кезеңде алдын ала анықталған Геофизикалық, геологиялық-тектоникалық және сейсмологиялық мәліметтер кешені негізінде зерттелетін аумақтағы жер сілкінісінің нақты және ықтимал аймактарынын аймактык сейсмотектоникалык моделі (сейсмогендік аймақтар қартасы) әзірленді. Сейсмотектоникалық модель ықтималдық нұсқада сейсмикалық қарқындылықты есептеу үшін, сондай-ақ жер үсті жылдамдығының ең жоғары жылдамдығында сейсмикалық әсерлерді болжау үшін негіз болып табылады. Оңтүстік Қазақстандағы тектоникалық жарылымдар картасы әртүрлі сейсмотектоникалық және геодинамикалық құрылыстарда, соның ішінде жер қыртысының бұзылуымен байланысты қауіпті табиғи процестерді болжау үшін қолданбалы сипаттағы құрылыстарда қолданылуы мүмкін. Мәліметтер қорымен бірге ол ақпаратты жинақтаудың, оны тектонофизикалық талдаудың және басқа да картографиялық жобаларды әзірлеудің берік негізі, бұл Қазақстанның оңтүстік-шығысындағы сейсмотектоникалық процестің ерекшеліктерін тереңірек түсінуге мүмкіндік береді.

Түйін сөздер: тектоникалық жарылым, сейсмотектоникалық модель, сейсмикалық потенциал

© Н.П. Степаненко*, О.К. Курилова, А.Б. Еркинова, Т.М. Кайдаш, 2025. ТОО «Национальный научный центр сейсмологических наблюдений и исследований» МЧС РК, Алматы, Казахстан. E-mail: nstep56@mail.ru

СЕЙСМОТЕКТОНИЧЕСКАЯ МОДЕЛЬ ЮЖНОГО КАЗАХСТАНА КАК ОСНОВА ОЦЕНКИ СЕЙСМИЧЕСКОЙ ОПАСНОСТИ

Н.П. Степаненко — кандидат технических наук, заведующий лабораторией, ТОО «Национальный научный центр сейсмологических наблюдений и исследований», МЧС РК, Алматы, Казахстан,

E-mail: nstep56@mail.ru, ORCID: https://orcid.org/0000-0003-3532-5481;

О.К. Курилова — ведущий научный сотрудник, ТОО «Национальный научный центр сейсмологических наблюдений и исследований», МЧС РК, Алматы, Казахстан,

E-mail: kurilova.o@mail.ru, ORCID: https://orcid.org/0009-0003-9420-2323;

А.Б. Еркинова — старший научный сотрудник, ТОО «Национальный научный центр сейсмологических наблюдений и исследований», МЧС РК, Алматы, Казахстан,

E-mail: akerke erkinova@mail.ru, ORCID: https://orcid.org/0009-0009-6320-6413;

Т.М. Кайдаш — кандидат геолого-минералогических наук, ведущий научный сотрудник, ТОО «Национальный научный центр сейсмологических наблюдений и исследований», МЧС РК, Алматы, Казахстан,

E-mail: tankay@yandex.ru, ORCID: https://orcid.org/0009-0009-7804-9676.

Аннотация. В сейсмологическом и сейсмотектоническом отношении Приаральско-Каратауский сейсмоопасный регион, включающий территорию Южного Казахстана, изучен недостаточно. Вместе с тем для данного региона накоплены детальные геолого-геофизические материалы, а также данные о мощности земной коры и строении активной мантии. На этой территории в разные периоды фиксировались сейсмические события магнитудой М=2.5-7.5, что свидетельствует о наличии потенциально опасных сейсмогенерирующих зон, способных порождать землетрясения высокой магнитуды. Эти зоны являются источниками мощных динамических воздействий на геологическую среду, а через неё, в свою очередь, — на строительные конструкции и среду обитания человека. Активность сейсмических районов определяется историей их геологического развития, особенно на неотектоническом этапе. На основе комплекса геофизических, геолого-тектонических и сейсмологических данных разработана региональная сейсмотектоническая модель — карта сейсмогенерирующих зон, отражающая реальные и потенциальные области возникновения очагов землетрясений. Сейсмотектоническая модель служит основой для расчётов сейсмической интенсивности в вероятностном варианте и прогноза сейсмических воздействий в терминах пиковых ускорений грунта. Карта тектонических разломов Южного Казахстана может использоваться при сейсмотектонических и геодинамических построениях, включая прикладные задачи прогнозирования опасных природных процессов, связанных с деструкцией земной коры. Совместно с базой данных она формирует фундамент для систематизации информации, её тектонофизического анализа и развития последующих картографических проектов, что способствует более глубокому пониманию особенностей сейсмотектонических процессов Южного Казахстана.

Ключевые слова: тектонический разлом, сейсмотектоническая модель, сейсмопотенциал

Introduction. Southern Kazakhstan is one of the developed industrial and agricultural regions of the Republic of Kazakhstan. Due to the peculiarities of natural conditions, all the most industrially developed and densely populated areas are located near potentially dangerous seismic zones with a maximum magnitude of expected earthquakes from 6 to 8, where industrial and civil construction is carried out and in connection with this there is an intensive growth of the population. Seismic zones are sources of powerful dynamic impacts on the geological environment, and through it - on various building structures and on the human habitat. On the other hand, it should be borne in mind that in some cases it is the level of seismic hazard of the territory that determines the prospects for further development of new industrial areas.

Urgent issues of ensuring population safety, earthquake-resistant construction and preventing possible damage from earthquakes have determined the need to

develop a system of complex geological-geophysical and seismological study of geodynamically unstable zones. The zones are distinguished by the properties of the environment and the dynamics of processes that tend to destabilize them under the influence of regional and global forces, and are manifested in seismicity.

An important, essentially fundamental, seismogenic role is attributed to mobile fault zones. Active faults of various morphokinematic types, along with the presence of an active mantle, play a key role in controlling the seismicity of the study region (Timush, 2011). They are the most important deformation structural elements of the earth's crust, form regularly oriented systems, the study of which creates the prerequisites for identifying structural criteria for localizing earthquake focus (Myasnikov et al., 1981) and, on their basis, developing a seismotectonic model (maps of seismogenic zones).

One of the key problems of seismic hazard assessment and study of seismotectonic process patterns is related to the lack of electronic cartographic projects implemented at a modern scientific level using new information technologies (Lunina et al., 2010). Digital maps of tectonic faults with an accompanying attribute base in electronic form can be used as a tectonic basis for generalizing geological, geophysical, hydrogeological data for the purpose of forecasting dangerous endogenous geological processes, primarily seismic ones. Their advantage is a comprehensive basis that combines a large amount of data into a single format. As a basis for the seismotectonic model of Southern Kazakhstan A digital (electronic) map of active tectonic faults and an attribute database used in calculations for probabilistic assessment of seismic hazard have been developed.

Methodology for mapping tectonic faults using GIS technologies. Modeling of geographic space has simplified the implementation of geographic information systems (GIS) due to a fundamentally new approach to processing and presenting results in the format of digital models. GIS technologies allow for the generalization of huge arrays of information, on the basis of which an attribute database of the objects under study is created. In addition, geographic information systems are effective for determining the tectonic regime of an area, its dynamic potential and geological structure as a whole. An absolute advantage of digital maps is the ability to supplement new information according to selected criteria and expand the scope of the project when accumulating new data.

The map of active tectonic faults of South Kazakhstan is organized in the coordinate system of the Gauss-Kruger projection, units of measurement are meters, which allows for automatic calculation of the geographic characteristics of the fault: object coordinates, length, strike azimuth. When vectorizing faults, the scales of raster materials were taken into account, and faults were detailed. The work was carried out in the Arc GIS system.

A large number of archive and literary materials, as well as geological, tectonic, hydrogeological, cosmostructural and other maps of Kazakhstan and adjacent territories published in previous years, were collected, analyzed, critically assessed and summarized. The algorithm for creating a digital fault map includes referencing,

digitizing (vectorizing) raster media and filling the attribute database with characteristics of faults, including the most complete information about them, separating faults by layers and map types. Detailing of faults provides for work on changing the position of already existing vector objects and their segmentation, if new sources indicate this. In this case, the rule of topological correctness and scaling is observed. In addition to thematic map layers, technical layers are created (geographical raster anchor points, cartographic benchmarks for linking the map to a specific coordinate system, etc.). In GIS, objects are depicted in vector form and linked to records of various information in attribute data bases.

In the course of the work, faults are segmented based on the change in geographic extent. This affected the filling of the attribute database, as in literary and field sources the fault is described completely, i.e. the characteristics of one segment are distributed by analogy to the entire length of this fault. In a particular case, in the attribute database, the segments of one fault have the same characteristics, but as the interpretation of new seismic data and analysis of space images shows, This does not always correspond to the actual characteristics of the fault segment.

The faults whose activity is confirmed by modern seismicity were studied. The geometry of the faults and their segments was determined by the coordinates of the nodes of their lines in the shape layer created as a result of vectorization of paper maps or conversion from databases of sources (with subsequent correction of their position according to contextual materials).

As a result of the analysis and generalization of the collected data at a modern level using GIS technologies (Arc GIS program [ArcGIS 10.4 for Desktop, license type: Basic]), a vector digital map of active faults of South Kazakhstan was developed (Figure 1).

The attribute database (Table 1) contains parameters for geographically linked objects (faults and their segments) with signs of the latest movements in the Late Pleistocene and Holocene: their names, segmentation, length of segments and their geographical coordinates, data on kinematics (direction of movements), strike azimuth, dip angle, movement velocities, estimated magnitude Mw. The database makes it possible to obtain information on faults and solve more general problems – thematic mapping, determining the parameters of modern geodynamic processes, assessing seismic and other geodynamic hazards. The format of the database construction allows for its constant replenishment.

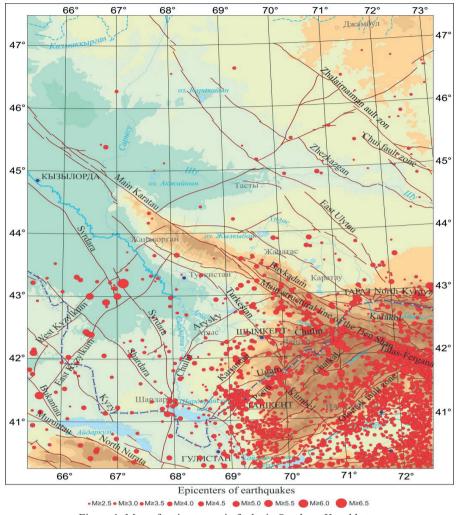


Figure 1. Map of active tectonic faults in Southern Kazakhstan

The calculation of the moment magnitude Mw was carried out using the formulas (Donald et al. 1994; Kocharyan, 2016)

- 1) Mw = 5.08 + 1.16 * log(Lmax), (for all faults), where Lmax is the length of the fracture. Used for faults with unknown type of movement.
- 2) Mw = 5.16 + 1.12 * log(Lmax) (for strike-slip) For shifts: strike-slip.
- 3) Mw = 5.00 + 1.22*log(Lmax) (for reverse faults), For upthrusts, thrusts: reverse.
- 4) Mw = 4.86 + 1.32 * log(Lmax) (for normal faults), For resets: normal.

Table 1. Attributive database of active tectonic faults of Southern Kazakhstan (fragment)

OBJECT ID #	ID No.	NAME	TYPE	SIDE	DIP	RATE	Mw
1	1_1	The main structural line of the Tien Shan	Strike slip	+SW	90°	1-3mm/year	6.57
2	1_2	The main structural line of the Tien Shan	Strike slip	+SW	90°	1-3 mm / year	6.5
1327	3_28	Talas-Fergana	R everse	+NE	70-85°	~2mm/year	5.52
		•••					
1377	3_78	Main Karatau	Reverse	+N	50-65°	~2mm/year	5.49
2231	8_1	Chulin	No data	+E	No data	No data	6
2257	8_27	Chulin	Thrust	+S	~35°	No data	5.98
		•••					
2490	14_133	Syrdara	Normal	+NW	75-90°	1.5-2.4 mm / year	5.47
2491	14_132	Syrdara	Normal	+NW	75-90°	1.5-2.4 mm/ year	5.4
		•••				•••	

Continuation of table 1

BEARING	minX	minY	maxX	maxY	SHAPE_Length
290.3	70.940922	42.426883	70.744521	42.496502	18100.5
261	70,731466	42,478254	70.545283	42.46905	15589.3
285	68.998551	43.383505	68.968068	43.391204	2641.9
333.2	67.337662	43.89081	67.325128	43.911388	2498.9
355.3	67.894827	41.144019	67.892964	41.200011	6221.1
96.3	68.724904	42.26226	68.800894	42.252125	6394.2
33 6 .2	66.090164	44.239028	66.082616	44.252717	1637.45
331.7	66.060039	44.283431	66.049151	44.299354	1972.66
ODIECE	ID 1: . 1	ALC NIANCE	TEXAL	C 1, 1 1	. CIDE 1

OBJECT ID – object identifier, NAME – name; TYPE – type, fault kinematics; SIDE – dip azimuth relative to the raised wing; DIP – dip angle; RAT – velocity of movement within the geological structure; Mw – estimated moment magnitude; BEARING – strike azimuth; minX; Y—initial coordinates of the fault segment; maxX, Y—final coordinates of the fault segment, SHAPE Length – the length of this segment.

Research results and discussion. Based on a complex of geophysical, geological and tectonic features of the deep and upper crustal structure of the earth's crust, seismological data A regional seismotectonic model (Map of seismogenic zones) of real and potential zones of occurrence of earthquake sources in the territory of Southern Kazakhstan was developed (Figure 2).

The established seismological, geological and geophysical criteria served as the basis for differentiating seismogenic zones by the maximum magnitude of expected earthquakes (Timush et al., 2012). A brief description of the most important of them is given.

North Kyrgyz seismogenic zone is confined to the marginal reverse -thrust fault, limiting the Kyrgyz Range from the north. In the blocks adjacent to the zone, pre-Baikal and Baikal metamorphic complexes are exposed, penetrated on the eastern flank by the Kungey granite massifs (Knauf, 1966). The thickness of the earth's crust increases from west to east from 50 to 60 km. Along the described zone, the magnitude of the displacement of the Epihercynian Leveling Surface increases from west to east from 1.5 to 7.5 km, and its total uplift in the Kyrgyz Range is, respectively, 1.5-4.0 km. The total INM (intensity of neotectonic movements), therefore, fluctuates from 3 to 11.5 units, which allows us to estimate the seismogenic potential of the North Kyrgyz zone from $M_{max} = 6.5$ to 7.0. To date, the largest earthquake in the zone had a magnitude of M = 6.5 (Sydykov, 2004).

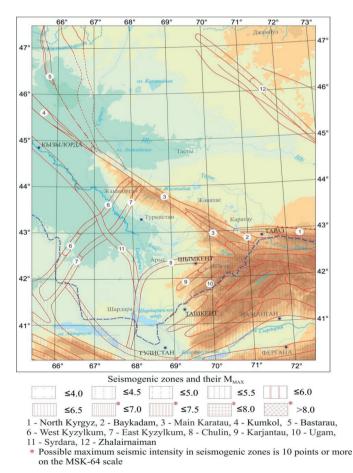


Figure 2. Map of seismic generating zones of Southern Kazakhstan

Baikadam seismogenic zone corresponds to the dynamic zone the fault of the same name, dividing the Proterozoic and Lower Paleozoic blocks of the Maly Karatau. The structural-material complexes are represented by terrigenous rocks metamorphosed to varying degrees; granitoid intrusions are absent. The amplitudes of the latest movements do not exceed 400 m. The seismicity of this region is characterized by earthquakes of the class K=9-11 with focal depths within 15-20 km. In general, the seismic potential The Baikadam zone is estimated as $M_{max}=5.5$.

Main Karatau seismogenic zone is associated with a deep fault, which is the main structural element of this region on the continuation of the Talas-Fergana fault. Of all the faults, the Main Karatau Fault is the best studied. It has been traced by seismic exploration to a depth of over 60 km (i.e. it is a through-crust fault), and the amplitude of the vertical displacement of the northeastern wing reaches 8- 19 km (Abdulin et al., 1986). According to the kinematics of movements, the fault is a through right-hand strike-slip fault of long development (from the Upper Proterozoic to the present), separating various geotectonic structures: to the northeast of it are early Caledonian complexes, and to the southwest are middle Hercynian complexes with Caledonides at the base; the consolidated base is characterized by the absence of intrusive massifs (Ibragimov, 1978).

In the newest tectonic structure of the Main Karatau the fault is also clearly expressed, delimiting the wings of the Karatau arch, the strike of which coincides with the orientation of the main Hercynian structures. The southwestern wing along the described zone is thrown up, and the amplitude first increases from northwest to southeast to 2000 m, and then decreases to 600-700 m. The heights of the peneplain in the same direction accordingly increase from 800 m to 2500 m, and then decrease to 600 m. In the Aryskum depression, a number of subparallel faults extending to the north can be attributed to the zone of influence of the Main Karatau fault, forming graben-like structures with a vertical displacement of up to 1500-2000 m. Taking into account the given characteristics, the seismogenic potential of the Main Karatau zone is assessed differential. In the area of maximum intensity of the newest movements M = 6.0, and to the northwest of it M = 5.5. To date, strong earthquakes are not known in the Karatau region, seismic activity and K_{max} are not assessed due to the lack of instrumental data.

The West and East Kyzylkum seismogenic zones are confined to the faults of the same name, identified under the platform cover along the northwestern edge of the Zhaugash depression, which apparently has a graben morphology. In the western part of the Aral-Karatau seismically active region, the faults are considered active. The relative displacement along the northwestern edge of the named structure is about 1 km. In the Quaternary, this block has a tendency to rise. The consolidated basement is represented by terrigenous Caledonian formations. The crustal thickness is increased to according to instrumental observations, earthquakes with 48 km K=9-15 occurred within the Kyzylkum zone . The seismic potential of the zone is estimated as $M_{max}=6.5$ to the southwest of the intersection with the Syrdarya zone and as $M_{max}=5.5$ to the northeast of this node (Timush et al., 2012).

Chulinskaya seismogenic zone accompanies a fault that arcs across a vast area of the newest Chatkal-Kurama uplifts located to the south of it. The fault zone in the consolidated basement is expressed by intensive crushing, secondary changes in carbonate-terrigenous formations; a step with a displacement amplitude of about 1.5 km is noted along the fault. Within the Chatkal-Kurama mountain region (Timush, 2011; Khodjaev, 1985), the most widely developed and clearly expressed in both Paleozoic and Mesozoic-Cenozoic deposits are the NE fault systems, which are the boundary between the latest uplifts and subsidences (Tashkent, 1971). Almost all structures of the mountain region adjoin the end of the Talas -Fergana fault and have a SE asymmetry (Chediya, 1986; Nurmatov et al., 2004). The age of the faults is Upper Paleozoic, most of the faults appeared between the Middle Carboniferous and Late Permian. These fault systems are still active in the modern period. According to morphogenetic features, they are represented by reverse faults, thrusts, and, less often, normal faults. The amplitude of vertical displacement along some faults reaches 5-6 km. High intensity of recent movements is also noted here, which makes it possible to predict earthquakes with a magnitude of up to 6.0, and perhaps even more. The thickness of the earth's crust is about 40 km. According to available instrumental data, numerous earthquakes of the class have occurred along the Chulin zone K = 9-12.

Karzhantau seismogenic zone is associated with a series of updated faults that limit the northwest Karzhantau rising block. Karzhantau the rift is one from most extended bursting violations north - east directions. Almost on to all throughout it is clear is fixed geomorphologically and fine celebrated on topographic maps. Surface mixer tilted on northwest under angle from 40° to 70°. Maximum vertical amplitude movements by break exceeded 3000 m. Shifts by him continued and in quaternary time that is fixed moving deposits Karzhantau terraces up to 100 m (Chediya, 1986). Landslides, avalanches and earthquakes timedto zone fault, serve confirmation his modern activity. Seismic activity zones marked more to Tashkent earthquake of April 26, 1966, epicenter whom was timed to her. Her north-west wing raised. Amplitude movements for newest stage reaches 3500 m (Maksudov et al., 2005). The total value of the vertical neotectonic movements of the Karzhantau arch-block uplift is emphasized by the values of mean velocity gradients of 0.2-0.4 mm/year. According to the complex of geological parameters, the seismogenic potential of the zone is estimated as M_{max} =7.0 with a decrease to 6.5 on the southwestern extension. The maximum earthquake in the zone had a magnitude of M = 6.5.

The Ugam seismogenerating zone is associated with block uplifts of the Pskem and Ugam ridges, located in the area of influence of the Kumbel-Ugam fault zone, which have maximum values of gradients of average velocities of the latest vertical tectonic movements of 0.4-0.7 mm/year. Ugam zone faults is northwestcontinuation Kumbel and can be traced from Humsan on north - northwest, cuttingwatershed Karzhantau ridge and fading away upper reaches r. Keles under quaternary deposits.

Morphologically expressed reset, value vertical movements by to whom is not the same (Zubovich et al., 2004).

The Chatkal block, which is complexly constructed and extends westward beyond the above-mentioned zone, is distinguished by a mosaic distribution of sections with gradients of average velocities of recent vertical movements, the highest values of which reach 0.3-0.9 mm/year. The modern seismic activity of the fault zone is confirmed by the active manifestation of physical and geological processes within its boundaries, as well as by the confinement of earthquakes. There are also paleoseismic structures here that were formed during paleoearthquakes with a strength of at least 9 points (Khodjaev, 1985; Bakiev et al., 2001). However, an analysis of the history of the development of these faults has shown that they were active in the Cenozoic period. Detailed seismogeological and geodynamic studies indicate the activation of modern tectonic movements in this zone. Using paleoseismological data, more accurate information was obtained from pleistoseismic and possibly epicentral zones of strong earthquakes and the highest level of seismic hazard of the Kumbel- Ugam fault zone was identified. In addition, seismic events up to the twelfth energy class were noted in the fault zone. The maximum width of the influence zone of the Kumbel- Ugam faults reaches 25 km.

The Syrdarya seismogenic zone is confined to the fault of the same name, identified by geophysical and remote sensing methods along the southwestern foothills of the Karatau Range beneath the Cretaceous-Quaternary cover (10 to 300 m thick) in the Epi-Caledonian basement. It runs from SE to NW at an azimuth of 315°; it is almost rectilinear, and is a normal fault with the fault plane dipping to the SW at an angle of 75-90°. (Ospanov et al., 1974). Throughout the Upper Paleozoic, the fault played a decisive role in the formation of faults, magmatism, and metallogeny. The fault was formed in the Middle Carboniferous as a result of increased tectonic movements; After the Middle Carboniferous period, the Syr Darya fault, crossing the edge of the folded structure, was the boundary between the anticlinorium of the North-West Karatau and the Kyzylkum depression and during the late Hercynian stage had great mobility and permeability. A three-phase intrusive complex is spatially and temporally associated with the Syr Darya fault: the first phase is represented by ultrabasic rocks (Middle Carboniferous), serpentinized, then reworked into talc shales, the second phase is diorites and the third is granites (Late Carboniferous). The consolidated basement is represented by carbonate-terrigenous formations, the thickness of the earth's crust is about 40 km. The vertical amplitude of the Syr Darya deep fault is established in the Karamurun Mountains and is 1000-1500 m. The intensity of Alpine movements is from 0.6 to 1.2 km, and the total subsidence is from 0.8 to 2.4 km. The total intensity of the newest movements in individual small areas reaches 3.8 km, but its values predominate at 2.8-3.0 km, typical for areas with a magnitude of M = 6.0 (Timush, 2011). This seismic potential is predicted for the entire Syr Darya zone, within which such events took place. On the northwestern flank, after crossing the Kyzylkum zone, the amplitudes of basement displacements do

not exceed 0.2 km, but the zone is still traced by weak earthquakes. Here its potential is estimated as $M_{max} = 5.5$.

Zhalairnaimanskaya The seismogenic zone is mapped along the fault, which is a long-lived upthrust -slip fault dipping to the northeast at angles of $70-80^{\circ}$: it is traced over more than 1000 km, controlled by the ultramafic belt. The fault was laid in the Baikal epoch of tectogenesis and has been repeatedly renewed. Along it, due to vertical folded -block movements in the crushing zone up to 5 km a tectonic mélange was formed, consisting of rocks of different ages and compositions (hyperbasites, gabbroids, diabasites, spilites, siliceous-clayey shales, limestones). It continues into the Tien Shan, where it is most clearly expressed on the northern slope of the Kungei Alatau in the form of tectonic scarps and river valleys of NW strike. The amplitudes of the latest movements do not exceed 200 m (Timush, 2011; Timush et al., 2012). Seismicity is characterized by rare weak earthquakes of the class K = 7-8 with focal depths of 15- 20 km. Seismic potential The Zhalairnaiman zone is estimated at $M_{max} = 4.5$.

Conclusions. As a result of the conducted research, a vector digital map of active tectonic faults of Southern Kazakhstan was developed using GIS technologies. Active faults of various morphokinematic types play a key role in monitoring seismicity in the region and are the most important deformation structural elements of the earth's crust when identifying criteria for localizing earthquake foci. The attributive database of faults can be used to solve such problems as thematic mapping, determining the parameters of modern geodynamic processes, assessing seismic and other geodynamic hazards. The format of the database construction allows for its constant replenishment.

The creation of a seismotectonic model in the form of a map of seismogenic zones differentiated by the maximum magnitude of expected earthquakes is a general problem of assessing seismic hazard and seismic risk of territories, which is very important for planning the economic development of sectors of the national economy and the construction of residential agglomerations. In this aspect, it is necessary to continue searching for fundamental connections between seismicity parameters and geological conditions, tectonic structure, deep structure of the earth's crust, the latest tectonic movements and geophysical fields.

References

Abdulin A.A., Chimbulatov M.A., Ergaliev G.Kh. and others. (1986) Osnovnye cherty geologicheskogo stroeniya i rayonirovanie Karatau [Main features of the geological structure and zoning of Karatau]. Geology and metallogeny of Karatau. - Alma-Ata: Science. — P. 5-8. (in Russ)

Bakiev M.Kh., Khamidov L.A., Ibragimov A.Kh. (2001) Koncentraciya napryazheniy vblizi lokalnyh neodnorodnostey zemnoy kory [Stress concentration near local inhomogeneities of the earth's crust]. Inland Earth quake. China, 2001. — Vol. 15, No. 4. — P. 376-384. (in Russ)

Bakiev M.Kh., Khamidov L.A. (2001) Izmenenie peremeshcheniy na poverhnosti epicentralnoy zony [Changes in displacements on the surface of the epicentral zone]. Inland Earthquake. China, 2001. — Vol. 15, No. 3. — P. 259-267. (in Russ)

G.G. Kocharyan. Geomekhanika razlomov [Geomechanics of faults]; Russian Academy of Sciences; Institute of Geosphere Dynamics; Russian Science Foundation, M.: GEOS, 2016. — 424 p. (in Russ)

Donald L.W, Kevin J. Coppersmith. Novye empiricheskie sootnosheniya mezhdu magnitudoy, dlinoy razryva, shirinoi razryva, ploshchadyu razryva i smeshcheniem poverhnosti [New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement]. Bulletin of the Seismological Society of America 1994; 84(4):974–1002. doi: https://doi.org/10.1785/BSSA0840040974 (in Russ)

Zubovich A.V., Yarmukhamedov A.R., Kuzikov S.I., Moisenko O.I., Radzhabov Sh.S., Shchelochkov G.G. (2004) Sovremennye deformacionnye processy v zapadnom Tyan-Shane [Modern deformation processes in the western Tien Shan]. Problems of seismic hazard assessment, seismic risk and earthquake forecast. — Tashkent, 2004. — P. 238-240. (in Russ)

Ibragimov R.N. (1978) Seysmogennye zony Srednego Tyan-Shanya [Seismogenic zones of the Middle Tien Shan]. — Tashkent. — 144 p. (in Russ)

Knauf V.I. (1966) Tektonicheskoe rayonirovanie Severnoy Kirgizii [Tectonic zoning of Northern Kyrgyzstan]. Geotectonics. — No. 5. — P. 48-57. (in Russ)

Lunina O.V., Gladkov A.S., Sherstyankin P.P. Novaya elektronnaya karta aktivnyh razlomov yuga Vostochnoy Sibiri 2010 g [New electronic map of active faults in the south of Eastern Siberia in 2010]. Reports of the Academy of Sciences, 2010, Vol. 433, No. 5. - P. 1-6. (in Russ)

Myasnikov A.K., Bykadorov V.A., Michman E.S., Smirnov A.V., Kovrizhnykh Yu.B. (1981) Nalozhennye progiby i vpadiny [Superimposed troughs and depressions]. Geological map of the Kazakh SSR. South Kazakhstan series (explanatory note), - Alma-Ata. — P. 229-238. (in Russ)

Maksudov S.Kh., Pak V.A., Voronich T.M., Karimova G.G., Bisenova A.T. Nekotorye osobennosti stroeniya i geodinamiki litosfery Uzbekistana i ih svyaz s metallogeniey [Some features of the structure and geodynamics of the lithosphere of Uzbekistan and their relationship with metallogeny]. Zhurn. Geology and mineral resources, 2005. — No. 2. — P. 48-52. (in Russ)

Nurmatov U.A., Ibragimov R.N. Dinamika seysmichnosti v seysmogennyh zonah Uzbekistana [Dynamics of seismicity in seismogenic zones of Uzbekistan]. Problems of seismic hazard assessment, seismic risk and earthquake forecast. - Tashkent, 2004. — P. 224-233. (in Russ)

Ospanov E.S., Valeev F.Ya. (1974) Nekotorye dannye o prirode Syrdaryinskogo razloma v yugozapadnyh predgoryah severnogo Karatau [Some data on the nature of the Syr Darya fault in the southwestern foothills of northern Karatau]. Materials on the geology and mineral resources of Southern Kazakhstan. — Alma-Ata, 1974. — P. 199-203. (in Russ)

Sydykov A. (2004) Seysmicheskiy rezhim territorii Kazahstana [Seismic regime of the territory of Kazakhstan]. — Almaty: Gylym. — 270 p. (in Russ)

Gl. ed. G.A. (1971) Mavlyanov, Tashkentskoe zemletryasenie [Tashkent earthquake]. — Tashkent. — 672 p. (in Russ)

Timush A.V., Taradaeva T.V., Stepanenko N.P., Sadykova A.B., Sydykov A. (2012) Seysmogeneriruyushchie zony Kazahstana [Seismogenic zones of Kazakhstan] - Almaty. — 81 P. (IN Russ)

Timush A.V. (2011) Seysmotektonika litosfery Kazahstana [Seismotectonics of the lithosphere of Kazakhstan] - Almaty: Luxe Media Group. — 590 p. (in Russ)

Khodjaev A.K. (1985) Paleoseysmogeologiya Chatkalo-Kuraminskogo regiona [Paleoseismogeology Chatkal-Kurama region]. — Tashkent: Fan. — 136 p. (in Russ)

Chedia O.K. (1986) Morfostruktury i noveyshiy tektogenez Tyan-Shanya [Morphostructures and the newest Tectogenesis of Tien Shan]. — Frunze: Ilim. — 314 p. (in Russ)

Publication Ethics and Publication Malpractice in the journals of the Central Asian Academic Research Center LLP

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the journals of the Central Asian Academic Research Center LLP implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The Central Asian Academic Research Center LLP follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics. org/files/ u2/New_Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/ or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the Central Asian Academic Research Center LLP.

The Editorial Board of the Central Asian Academic Research Center LLP will monitor and safeguard publishing ethics.

Правила оформления статьи для публикации в журнале смотреть на сайтах:

www:nauka-nanrk.kz http://www.geolog-technical.kz/index.php/en/ ISSN 2518-170X (Online), ISSN 2224-5278 (Print)

Ответственный редактор А. Ботанқызы Редакторы: Д.С. Аленов, Т. Апендиев Верстка на компьютере: Г.Д. Жадырановой

Подписано в печать 15.10.2025. Формат 70х90¹/ $_{16}$. 20,5 п.л. Заказ 5.